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Abstract—The behavior space of real time hybrid systems is
very complex and hence expensive to conduct the classical full
state space model checking. Compared to the classical model
checking, bounded model checking (BMC) is much cheaper to
conduct and has better scalability. This work presents a technique
that can derive, in some cases, a proof of unbounded reachability
argument of Linear Hybrid Automata (LHA) from a BMC
procedure.

During BMC of LHA, typical procedures can discover sets of
unsatisfiable constraint cores, a.k.a. UC or IIS, in the constraint
set according to the bounded continuous state space of LHA.
Currently, such unsatisfiable constraints are only fed back to the
constraint set to accelerate the BMC solving. In this paper, we
propose that such unsatisfiable constraint core can be exploited to
give general unbounded verification result of the system model.
As each constraint can be mapped back to certain semantical
elements of the system model, the unsatisfiable constraint cores
can be mapped back into path segments, which are not feasible, in
the graph structure of the LHA model. Clearly, if all the potential
paths to reach the target location in the graph structure have to
go through such infeasible path segments, the target location is
not reachable in general, not only in the given bound.

Based on this observation, we propose to encode the infeasible
path segments as linear temporal logic (LTL) formulas, and
present the graph structure, the discrete part, of the LHA model
as a transition system. Then, we can take advantage of the
mature off-the-shelf LTL model checking techniques to verify
whether there exists a path to reach the target location without
touching any detected IIS path segment in the graph structure
of the LHA model. We implement this technique into a bounded
LHA checker BACH. The experiments show that most of the
benchmarks can be verified by the enhanced BACH with a clearly
better performance and scalability.

I. INTRODUCTION

Hybrid Automata [1] are the classical modeling language
for real time hybrid systems with both discrete and contin-
uous state changes. The model checking problem for hybrid
automata is considerably difficult. Even for a relatively simple
class such as Linear Hybrid Automata (LHA), the reachability
problem is undecidable [1], [2]. Classical model checking
techniques attempt to compute the whole reachable state space
of LHA by the expensive polyhedral computation which is
sensitive to the number of continuous variables and not guar-
anteed to terminate. The state-of-the-art tools based on these
techniques such as HyTech [3], PHAVer [4] and PHAVer’s new
implementation SpaceEx [5] do not scale well to problems of
practical interest.

In recent years, bounded model checking (BMC) [6] has
been presented as an alternative technique to the classical
symbolic model checking. The basic idea of BMC is to search
for a counterexample in executions whose lengths are bounded
by some integer k [7], [8], when the complete behavior state
space is too complex to check by classical model checking.
The typical approach of BMC reachability analysis of LHA
is to encode the state space of LHA within the bound into
a constraint set which can then be solved with Satisfiability
Modulo Theories (SMT) solvers [7], [8]. During the solving,
techniques like conflict driven clause learning are applied to
utilize the unsatisfiable constraint core (UC) of the previous
solved constraint set to accelerate the follow-up solving. How-
ever, as the whole problem has to be encoded firstly, the object
SMT problem will become huge and hence difficult to solve
when the system size or the given threshold is large. This
greatly restricts the size of the LHA model that can be checked.

Different from the SMT-based BMC approach, a path-
oriented approach was proposed to conduct the bounded reach-
ability analysis of LHA [9]. The basic idea of this approach is
to check one abstract path in the graph structure of an LHA at
a time using Linear Programming (LP) to find whether there
exists a feasible continuous behavior of the LHA along this
discrete path. As the number of paths in the discrete graph
structure of an LHA under a given bounded number of discrete
transitions is finite, all the candidate paths can be enumerated
and checked one by one to tackle the BMC problem of LHA
[10]. Furthermore, when a path is proved to be infeasible
by the underlying LP solver, irreducible infeasible set (IIS)
technique [12] can be deployed on the constraint set generated
according to the path under checking to extract a minimal
inconsistent constraint set. Such inconsistent constraint set can
be mapped back to an infeasible path segment in the original
path. As any path containing an infeasible path segment is
definitely infeasible, the infeasible path segments, IIS, found
by the LP solver can be utilized to accelerate the BMC process
[11], [15].

With the efforts devoted to the BMC verification of LHA in
numerous studies [7], [8], [10], the size of the BMC problem
that can be verified is increased significantly. However, the
result of BMC verification only covers the bounded behavior of
the LHA model. It remains a very interesting problem whether
we can get an unbounded proof of the system from the BMC
result. In finite-state BMC, k-induction [20] is widely used
to get an unbounded result using induction-based proof. In



study [21], Moura et al. proposed a generalized k-induction
schema which can solve infinite-state systems including LHA.
Nevertheless, as expensive quantifier-elimination is used in the
procedure, the scalability and performance of the generalized
k-induction is restricted.

In this paper, we propose a novel method to tackle such
problem from a new direction. We propose that we can take
advantage of the intermediate result of BMC, the unsatis-
fiable constraint core, to achieve such target. In the previ-
ous mentioned path-oriented bounded reachability analysis of
LHA [15], the IIS found by the underlying LP solver is only
used to accelerate the BMC solving process. Nevertheless, as
each IIS can be mapped back to an infeasible path segment,
any path containing this IIS path segment cannot be feasible
as well. In other words, once an IIS is found, we can block a
path segment in the discrete graph structure of the LHA model.
During the experiment, we often see that after several path
segments are blocked, the path-enumerating procedure cannot
find any discrete path to reach the target location without
touching any of the detected IIS path segments in the LHA
model. In this situation, there does not exist a continuous
behavior to reach the target location in general, not only in
the bound.

Based on this observation, in this paper, we exploit the
IIS path segments to prove whether the bounded unreachable
argument can be extended to the unbounded state space.
We propose a linear temporal logic (LTL) [17], [18] based
approach to tackle such problem. In our approach, we present
the discrete part of the LHA model, the graph structure as
a finite-state transition system [18]. Then, we encode all the
IIS path segments detected during BMC solving into an LTL
formula. By checking whether the transition system satisfies
the LTL formula, we can prove whether there exists a discrete
path to reach the target location without containing any known
IIS path segment in the graph structure of the LHA. If the LTL
specification is satisfied, it means there will not exist such a
path no matter how large the bound is given, which implies
the bounded unreachable statement also stands in general
unbounded state space.

Linear temporal logic (LTL) is a logical formalism suited
for specifying linear time properties and is widely used to
describe system properties. The basic idea of LTL model
checking is to firstly construct an equivalent Büchi automata
from the LTL formulae [27] and then find a strong connected
component containing the accepted state. During the past two
decades, the techniques for LTL model checking have made
great progress and there are many off-the-shelf LTL model
checkers. NuSMV [16] is among the most well-known tools
for LTL model checking and is widely applied in verifying
practical problems. Recently, IC3 [22] algorithm was proposed
to perform SAT-based model checking without unfolding the
transition relation. It attracts a lot of attention because the
algorithm shows good performance in practical applications.
By using certain converting tool, it is viable to verify an LTL
model checking problem by IC3 technique, which can benefit
for free of all the achievements in IC3 algorithm.

The above LTL-based approach is implemented into a
bounded LHA checker BACH [10]. Once an LHA model and
a reachability specification are given, BACH starts to perform
path-oriented bounded reachability analysis. When the BMC

procedure terminates and reports the target is not reachable
in the given bound, all the infeasible path segments detected
during BMC solving process are encoded into an LTL formula.
Then, a state-of-the-art LTL model checker is deployed to
check whether the LTL specification is satisfied by the graph
structure of the LHA model. If yes, an unbounded result can
be given, otherwise a bounded result is given. We conduct a
series of case studies on the enhanced BACH, and compare
it with the state-of-the-art classical model checker SpaceEx.
The experiment results show that most of the benchmarks can
be proved that the reachability specification is not satisfied
in general by analyzing the intermediate results of BMC
procedure without performing the expensive classical model
checking. Furthermore, the experiment also shows a nice
performance and scalability of this procedure.

The rest of the paper is organized as follows: Sect. II
gives a quick review of the path-oriented bounded reachability
verification approach for LHA. After that, we present the main
contribution of this paper in Sect. III: deriving an unbounded
result from bounded verification using LTL model checking.
Sect. IV presents the implementation and performance of our
approach. Comparison with the related work is presented in
Sect. V. Finally the conclusion and future work are stated in
Sect. VI.

II. PATH-ORIENTED REACHABILITY ANALYSIS

In this section, we give the formal definition of linear
hybrid automata and recap the underlying technique of path-
oriented bounded reachability analysis that was proposed in
[9], [10]. Furthermore, we present our method of using irre-
ducible infeasible set (IIS) technique to locate infeasible path
segments from a path which is proved to be infeasible by the
path-oriented checking to accelerate the BMC procedure [15].
Such IIS-based infeasible path segment locating builds the base
of our LTL-based unbounded proof in Sect. III.

A. Basic Path-oriented Reachability Analysis

Definition 1: The LHA considered in this paper is defined
as a tuple H = (G,X,α, β, φ, ψ), where

- G = (Q, q0, qbad,Σ, E) is the (labeled) location
graph of H , where
• Q is a finite set of locations;
• q0 ∈ Q is the initial location;
• qbad ∈ Q is the bad location (the location that

should not be reachable);
• Σ is a finite set of labels;
• E ⊆ (Q− {qbad})× Σ×Q is a finite set of

(labeled) transitions, where no two outgoing
transitions from a given location have the
same label;

- X is a finite set of state continuous variables.
- α is a labeling function which maps each location in

Q−{q0} to a set of location invariants which are of
the form a ≤

∑l
i=0 cixi ≤ b where xi ∈ X , a, b and

ci are real numbers (a, b may be (minus)∞).
- β is a labeling function which maps each location

in Q − {q0} to a set of flow conditions which are
of the form ẋ ∈ [a, b] where x ∈ X , and a, b are
real numbers (a ≤ b). For any location q, for any



x ∈ X , there is one and only one flow condition
ẋ ∈ [a, b] ∈ β(q).

- φ is a set of labeling functions which map each
transition in E to a set of transition guards which
are of the form a ≤

∑l
i=0 cixi ≤ b, where xi ∈ X ,

a, b and ci are real numbers (a, b may be (minus)∞).
- ψ is a set of labeling functions which map each

transition in E to a set of reset actions which are
of the form x := c, where x ∈ X , c is a real number.

We use sequences of locations to represent the evolution
of an LHA from location to location. For an LHA H =
(G,X,α, β, φ, ψ), a path segment is a sequence of locations of

the form 〈v0〉
(φ0,ψ0)−→
σ0

〈v1〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈vn〉, which

satisfies (vi, σi, vi+1) ∈ E for each i (0 ≤ i < n), where
σi ∈ Σ, φi ∈ φ, ψi ∈ ψ. A path in H is a path segment
starting from the initial location q0.

For a path in H of the form 〈v0〉
(φ0,ψ0)−→
σ0

〈v1〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈vn〉, by assigning each location vi with a

time delay stamp δi we get a timed sequence of the form〈
v0
δ0

〉
(φ0,ψ0)−→
σ0

〈
v1
δ1

〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈
vn
δn

〉
where δi (0 < i ≤ n) is a nonnegative real number and
δ0 = 0 as v0 = q0 is the initial location. This time sequence
represents a behavior of H such that the system starts from
the initial location v0, stays there for δ0 time units, which is
0, then jumps to v1 and stays for δ1 time units, and so on.

The behavior of an LHA can be described informally as
follows. The automaton jumps from the initial location v0 to
v1 to initialize all the variables. Then, as time progresses, the
values of all variables change continuously according to the
flow conditions associated with the current location. At any
time, the system can change its current location from v to v′
provided that there is a transition (v, σ, v′) from v to v′, whose
all transition guards are satisfied by the current values of the
variables. With a location changed by a transition (v, σ, v′),
some variables are reset to the new value accordingly to the
reset actions in ψ. Transitions are assumed to be instantaneous.

Let H = (G,X,α, β, φ, ψ) be an LHA. Given a timed

sequence ω of the form
〈
v0
δ0

〉
(φ0,ψ0)−→
σ0

〈
v1
δ1

〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈
vn
δn

〉
, let ζi(x) represents the value of

x (x ∈ X) when the automaton has stayed at vi for delay
δi and λi(x) represents the value of x at the time the
automaton reaches vi along with ω (0 ≤ i ≤ n). It follows

that λi+1(x) =

{
d if x := d ∈ ψi
ζi(x) otherwise (0 ≤ i < n).

Definition 2: For an LHA H = (G,X,α, β, φ, ψ), a

timed sequence of the form
〈
v0
δ0

〉
(φ0,ψ0)−→
σ0

〈
v1
δ1

〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈
vn
δn

〉
represents a behavior of H if and

only if the following condition is satisfied:

• 〈v0〉
(φ0,ψ0)−→
σ0

〈v1〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈vn〉 is a path;

• each variable x ∈ X evolves according to its flow
condition in each location vi (0 < i ≤ n), i.e. uiδi ≤
ζi(x)− λi(x) ≤ u′iδi where ẋ ∈ [ui, u

′
i] ∈ β(vi);

• all the transition guards in φi (1 ≤ i ≤ n−1) are satis-
fied, i.e. for each transition guard a ≤

∑l
k=0 ckxk ≤ b

in φi, a ≤
∑l
k=0 ckζi(xk) ≤ b;

• the location invariant of each location vi (1 ≤ i ≤ n)
is satisfied, i.e. at the time the automaton reaches
and leaves vi, each constraint a ≤

∑l
k=0 ckxk ≤

b in α(vi) (1 ≤ i ≤ n) is satisfied, i.e. a ≤∑l
k=0 ckλi(xk) ≤ b and a ≤

∑l
k=0 ckζi(xk) ≤ b

Definition 3: For an LHA H = (G,X,α, β, φ, ψ), if a

timed sequence of the form
〈
v0
δ0

〉
(φ0,ψ0)−→
σ0

〈
v1
δ1

〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈
vn
δn

〉
is a behavior of H , we say path

ρ = 〈v0〉
(φ0,ψ0)−→
σ0

〈v1〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1

〈vn〉 is feasible,

and location vn is reachable along ρ.

For an LHA H = (G,X,α, β, φ, ψ), a reachability speci-
fication, denoted as R(v, ϕ), consists of a location v in H and
a set ϕ of variable constraints of the form a ≤

∑l
i=0 cixi ≤ b

where xi ∈ X for any i (0 ≤ i ≤ l), a, b and ci (0 ≤ i ≤ l)
are real numbers, (a, b may be (minus)∞).

Definition 4: Let H = (G,X,α, β, φ, ψ) be an LHA, and
R(v, ϕ) be a reachability specification. A behavior of H of

the form
〈
v0
δ0

〉
(φ0,ψ0)−→
σ0

〈
v1
δ1

〉
(φ1,ψ1)−→
σ1

. . .
(φn−1,ψn−1)−→

σn−1〈
vn
δn

〉
satisfies R(v, ϕ) if and only if vn = v and each con-

straint in ϕ is satisfied when the automaton has stayed in vn for
delay δn, i.e. for each variable constraint a ≤

∑l
k=0 ckxk ≤ b

in ϕ, a ≤
∑l
k=0 ckζn(xk) ≤ b where ζn(xk) (0 ≤ k ≤ l)

represents the value of xk when the automaton has stayed at
vn for the delay δn. H satisfies R(v, ϕ) if and only if there
is a behavior of H which satisfies R(v, ϕ).

According to Definitions 2 and 4, the reachability verifica-
tion problem can be translated into the feasibility problem of
a set of constraints on variables δi, λi(x), and ζi(x) where δi
represents the time delay that the automaton stays in location
vi, λi(x) and ζi(x) represent the value of x (x ∈ X) when
the automaton reaches and leaves the location vi, respectively
(0 ≤ i ≤ n). If we use notation Θ(ρ,R(v, ϕ)) to represent this
set of linear constraints, we can check if ρ satisfies R(v, ϕ)
by checking if the group Θ(ρ,R(v, ϕ)) of linear inequalities
has a solution, which can be answered by linear programming
efficiently.

As we all know, the basic idea of bounded model checking
(BMC) is to look for a counterexample with length no longer
than some integer k in model executions. Given an LHA and a
bound k, the number of candidate paths with length no longer
than k is finite. Therefore, if we enumerate and check all
the paths in the bound one by one, the bounded reachability
problem can be tackled in the path-oriented BMC way.



B. IIS based BMC Acceleration

Last paragraph gives a simple solution of path-oriented
bounded reachability analysis of LHA, which requires to
enumerate and check all the candidate paths one by one in
the graph structure of LHA. Nevertheless, when the given
threshold is large and the graph structure of LHA is complex,
there would be numerous paths to traverse, which could
consume quite a lot of time.

Fortunately, as we use LP to judge the feasibility of a
path ρ, irreducible infeasible set (IIS) [12] technique can
be deployed to locate a minimal infeasible set of the linear
constraint set w.r.t. ρ.

Generally speaking, a set of linear constraints C is said to
be satisfiable, if there exists a valuation of all the variables,
which makes all the constraints in C to be true. Otherwise, C
is unsatisfiable. If C is unsatisfiable, then IIS of C is a subset
C′ ⊆ C that C′ is unsatisfiable and for any C′′ ⊂ C′, C′′ is
satisfiable.

Intuitively speaking, the IIS of a linear constraint set is
an unsatisfiable set of constraints that becomes satisfiable if
any constraint is removed. Therefore, given an infeasible path
ρ, we can analyze the constraint set C generated according
to this path to locate an IIS C′. As each constraint in C is
generated from a semantical element, e.g. location invariants
or transition guards, in the locations and transitions from the
model. Therefore, for each constraint in C, we can locate the
source location or transition in ρ straightforwardly. As a result,
the constraint set located by the IIS technique can be mapped
back to a path segment ρ′ in ρ. In other words, once a path
is proved to be infeasible, an infeasible path segment can be
located from it by IIS analysis.

Fortunately, quoted from [12], the algorithm to locate the
IIS from a unsatisfiable set is “simple, relatively efficient and
easily incorporation into standard LP solvers”. Many software
packages are available, which supports the efficient analysis of
a linear constraint set and locating of the minimal IIS, such as
IBM CPLEX [29] and LINDO [30].

Fig. 1: Water-Level Monitor System

Now, let’s see a path ρ = 〈v0〉 −→
e0
〈v1〉 −→

e1
〈v2〉 −→

e2
〈v3〉 −→

e3
〈v4〉 −→

e4
〈v1〉 −→

e5
〈v5〉 in the Water-Level Monitor

System (Fig. 1), which is proven to be infeasible. The IIS of the
constraint set according to ρ given by the underlying LP solver

is C′ρ = {δv21 ≥ 0, ζv4(x)− λv4(x) = δv4 , ζv4(y)− λv4(y) =
−2δv4 , λv21 (y) = ζv4(y), ζv21 (y)− λv21 (y) = δv21 , λv4(x) = 0,

λv4(y) = 5, ζv4(x) = 2, ζv21 (y) = 0}, where v21 represents the
second occurrence of the location v1 in ρ (the 6th location).

Now we show how can this IIS be mapped back to a path
segment in ρ.

• δv21 ≥ 0 stands for the time elapsed in location v21 is
nonnegative.

• ζv4(x) − λv4(x) = δv4 , ζv4(y) − λv4(y) = −2δv4 ,
ζv21 (y)−λv21 (y) = δv5 , come from the flow conditions
of x and y in location v4: ẋ = 1, ẏ = −2, and location
v21 : ẏ = 1.

• λv4(x) = 0 and λv4(y) = 5 come from the transition
guard and reset action on transition e3: y = 5, x := 0

• ζv4(x) = 2 and ζv21 (y) = 0 come from the transition
guards on transition e4: x = 2 and e5: y = 0.

• λv21 (y) = ζv4(y) comes from the transition guard on
transition e4 as y is not reset on e4.

Therefore, the related locations and transitions of C′ρ
include v4, v21 , e3, e4, e5. As the corresponding infeasible path
segment ρ′ of C′ρ should be the shortest path segment which
contains all these elements in ρ, it is 〈v3〉 −→

e3
〈v4〉 −→

e4
〈v1〉 −→

e5
〈v5〉.

Clearly, a path ρ can be falsified for verification without
calling the underlying decision procedure if it contains an
infeasible path segment ρ′, since the occurrence of ρ′ in ρ will
just be translated into the same set of unsatisfiable constraints
with only name changed. Therefore, the path-enumerating
procedure should rule out paths which containing any known
infeasible path segment.

For each bound k, the workflow of the IIS based path-
oriented BMC solution for LHA is shown in Fig. 2 [15]. First, a
potential path ρ with length no longer than k is enumerated and
then analyzed by an LP solver. If ρ is feasible, the algorithm
terminates and reports ρ as a witness, otherwise IIS technique
is deployed to locate an infeasible path segment from ρ, which
will be fed back to the path-traversing procedure to accelerate
the BMC process. The algorithm terminates when no more
candidate path can be found or a counterexample is confirmed.

Consider the automaton in Fig. 1, suppose we want to
check whether location v5 is reachable along a path with
bound 20 and the first enumerated path is ρ1 = 〈v0〉 −→

e0
〈v1〉 −→

e1
〈v2〉 −→

e2
〈v3〉 −→

e3
〈v4〉 −→

e4
〈v1〉 −→

e5
〈v5〉. The

underlying LP solver proves ρ1 is infeasible and locates an
IIS path segment ρ′1 = 〈v3〉 −→

e3
〈v4〉 −→

e4
〈v1〉 −→

e5
〈v5〉,

which will be fed back to the path-enumerating procedure
to block such a path segment. Then the next found poten-
tial path to reach v5 without containing ρ′1 in the graph is
ρ2 = 〈v0〉 −→

e0
〈v1〉 −→

e5
〈v5〉. Also, it is infeasible and the

IIS path segment is ρ′2 = 〈v0〉 −→
e0
〈v1〉 −→

e5
〈v5〉 which

is the path itself. The third candidate path to reach v5 is
ρ3 = 〈v0〉 −→

e0
〈v1〉 −→

e1
〈v2〉 −→

e2
〈v3〉 −→

e3
〈v4〉 −→

e4
〈v1〉 −→

e1



Fig. 2: Workflow of Path-oriented Bounded Analysis for LHA

〈v2〉 −→
e2
〈v3〉 −→

e3
〈v4〉 −→

e4
〈v1〉 −→

e5
〈v5〉. Nevertheless, we

do not need to check this path by LP since it contains an exact
IIS path segment ρ′1. After the two IIS path segments ρ′1 and
ρ′2 are blocked, no candidate path within the given bound can
be found, which implies the target location is not reachable
within the given step threshold.

III. DERIVING UNBOUNDED RESULT FROM BMC
SOLVING PROCESS

A. Motivation Overview

The last section gives a quick review of the path-oriented
bounded reachability analysis of LHA [15]. The basic idea is
to find an abstract path, sequence of locations, in the discrete
graph structure of the LHA under verification first. Then, we
can check whether there exists a feasible continuous behavior
corresponding to certain discrete path. During the procedure,
IIS technique is used to locate infeasible path segments in the
graph model. Such path segments can be utilized to tailor the
bounded graph structure of the LHA model under verification
to accelerate the BMC solving process.

Clearly, the path segment w.r.t. each IIS is infeasible for
sure. In other words, once a new IIS is found, a path segment
in the graph structure of the LHA model under verification
can be blocked. During the experiment, we often see that the

LHA model under verification does not have any path left
after several IIS path segments are blocked. In this situation,
the reachability specification can not be satisfied in general,
not only in the bound. Consider the previous example in Fig.
1, the detected IIS path segments are ρ′1 = 〈v3〉 −→

e3
〈v4〉 −→

e4
〈v1〉 −→

e5
〈v5〉 and ρ′2 = 〈v0〉 −→

e0
〈v1〉 −→

e5
〈v5〉, and the target

location is v5. As we can see from the graph, if we block these
two path segments in the graph structure of the model, there
will not exist any path to reach v5 anymore.

Under this observation, if we can prove that there does
not exist any path to reach the target location without going
through certain path segments in the graph structure of the
LHA model, we can tell that the reachability specification is
not satisfied in general. In other words, the problem becomes
as follows: We have a directed graph with an initial location
and a target location. A set of path segments in the graph
are blocked. Then, whether there exists a path from the initial
location to the target location in the directed graph?

B. LTL Based IIS Representation and Verification

The problem summarized in the end of the last paragraph
concerns the reachability problem only on the discrete level,
the graph structure G, of the LHA model H . In order to
conduct the reachability verification on G, we propose to
extend G into a typical transition system (TS) [18] T firstly.

Definition 5: Given an LHA H = (G,X,α, β, φ, ψ), the
related discrete transition system (DTS) of its graph structure
T = {G,AP,L}1:

• G = (Q, q0, qbad,Σ, E) is the (labeled) location graph
of H .

• AP is the atomic proposition set in T . For each qi ∈
Q, there exists an atomic proposition pqi ∈ AP .

• L : Q→ 2AP is a labeling function . For each qi ∈ Q,
L(qi) = {pqi}.

Let us review the LHA presented in Fig. 1, the DTS T
modeling the graph structure of this LHA model is shown
in Fig. 3.

Fig. 3: The DTS Model of The Water-Level Monitor System

It is well known that linear temporal logic (LTL) [17]
is a powerful temporal logic of describing system behaviors.

1Note that this discrete transition system only focuses on the discrete graph
structure of the LHA. It is different from the one used to specify the semantics
of the LHA.



Hence, we propose to use LTL to describe the property that
there exists a path in the TS to reach the target location qbad
without containing any previously detected IIS path segment.

Avoiding IIS Path Segment. The first thing we need to
do is to represent the IIS path segment in LTL. Suppose there
is a path ρ = 〈v0〉 → 〈v1〉 → . . . → 〈vn〉 in an LHA H ,
and ρ contains a path segment ρ′ = 〈vi〉 → 〈vi+1〉 → . . . →
〈vj〉(i ≥ 0 ∧ j ≤ n). As T shares the same graph structure
G with H , ρ and ρ′ are also paths in the DTS T w.r.t. H .
According to Def. 5, we have L(vk) = pvk , (0 ≤ k ≤ n).
Therefore, L(v0) = pv0 , . . . , L(vi) = pvi , . . . , L(vn) = pvn
accordingly.

As ρ′ starts from location vi, vi satisfies LTL formula
pvi&X pvi+1

&...&X X . . .X︸ ︷︷ ︸
j−i

pvj . Based on this, given an

IIS path segment ρ′ = 〈vi〉 → 〈vi+1〉 → . . . → 〈vj〉, we give
the LTL formula representing this path segment as:

IISρ′ = pvi&X pvi+1& . . .&X X . . .X︸ ︷︷ ︸
j−i

pvj (1)

Furthermore, any path which does not contain path segment
ρ′ satisfies the LTL formula G(¬IISρ′).

Reaching the Target Location without Containing any
IIS Path Segment. The property that the target location qbad
can be reached by a path in the graph structure of an LHA can
be simply represented by an LTL formula F pqbad

. Then, given
a set of IIS path segments {ρ1, ρ2, . . . ρn}, the LTL formula
which is true for path reaching the target location without
containing any above IIS path segment is shown below:

(G(
∧

1≤i≤n

¬IISρi)) ∧ F pqbad
(2)

where IISρi represents the i-th IIS path segment. As our target
is to prove the nonexistence of such a path, the final LTL
specification is the negation of the above formula:

¬((G(
∧

1≤i≤n

¬IISρi)) ∧ F pqbad
) (3)

Theorem 1: Given an LHA H , a target location qbad
and a set of IIS path segments {ρ1, ρ2, . . . , ρn}, if the
DTS model T w.r.t. H satisfies the LTL specification
¬((G(

∧
1≤i≤n ¬IISρi))∧F pqbad

), then qbad is not reachable
in H in general.

Proof: Suppose not. [we take the negation of the given
statement and suppose it to be true.] Assume T satisfies the
LTL specification and qbad is reachable in H along a path
ρ = 〈v0〉 → 〈v1〉 → ...→ 〈vn〉(vn = qbad). Clearly, as T and
H shares the same graph structure G, ρ is also a path in T .

As qbad is reachable along ρ, this means there exists a
feasible continuous behavior of H along ρ, therefore ρ doesn’t
contain any IIS path segments related with {ρ1, ρ2, . . . ρn} for
sure. As a result, the LTL formula (G(

∧
1≤i≤n ¬IISρi)) ∧

F pqbad
is true for ρ. As we can see, ρ is the counterexample

of the given LTL specification ¬((G(
∧

1≤i≤n ¬IISρi)) ∧
F pqbad

). This contradicts the assumption that H satisfies the
LTL specification. [Hence, the supposition is false and the
proposition is true.]

Now, let us go back to the LHA in Fig. 1. As mentioned
in Sect. II, it has two IIS path segments: 〈v0〉 → 〈v1〉 → 〈v5〉,
and 〈v3〉 → 〈v4〉 → 〈v1〉 → 〈v5〉 and the target location is v5.
According to the above encoding method, the associated LTL
specification is:

¬((G(¬(pv0&X pv1&X X pv5) ∧ ¬(pv3&X pv4&

X X pv1 ∧X X X pv5))) ∧ F pv5) (4)

The model checking of LTL property on a transition system
is well-studied during the last two decades and there are
various efficient tools such as Spin [19], NuSMV [16] to tackle
this problem. Therefore, we can take advantage of these off-
the-shelf LTL checkers to prove the reachability of certain
target locations in the discrete graph structure efficiently.
Furthermore, with the help of the converting tool “smvtoaiger”
[25], we can formulate the LTL model checking problem
with AIGER [25] standard which is widely used in hardware
verification. Then, we can also solve the problem efficiently
with tools based on IC3 technique, such as iimc [24].

Fig. 4: Workflow of Unbounded Proof

Workflow of the LTL-based Proof. Now, by performing
the LTL verification on the discrete transition graph of the LHA
model, we can prove that after certain path segments in the
graph structure of the LHA model are blocked, whether there
still has any potential path left to reach the target location.
Clearly, if there does not exist a candidate path at all, then
the target location is not reachable in general. This provides a
procedure that allows us to derive, in some cases a proof of
unbounded result from a BMC solving process.

Given an LHA and a bound k, the workflow of this
LTL-based solution is shown in Fig. 4. The path-oriented
reachability analysis is conducted firstly and all detected IIS
path segments are saved during the BMC solving process,
marked as “BMC Procedure” by double square. The detailed



flow of “BMC Procedure” is shown in Fig. 2 previously. When
the bounded analysis is completed, if a feasible path is found
then it is reported as a witness which can confirm the target
location is reachable. Otherwise, all IIS path segments found
in the BMC procedure are encoded into an LTL specification.
After that, an LTL model checker is called to conduct the
unbounded proof by checking whether the specification is true
on the graph structure of the LHA. If yes, then the target
location is not reachable in general, otherwise a k-bounded
unreachable conclusion is reported.

IV. IMPLEMENTATION AND CASE STUDIES

Fig. 5: Temperature Control System

Fig. 6: Train Control System

The LTL-based verification procedure presented in this
paper is implemented into a path-oriented bounded reachability
checker of LHA - BACH [10]. The first underlying LTL model
checker selected is a typical LTL model checker NuSMV [16].
In addition, as mentioned in the last section, we also implement
the IC3 based approach into BACH and the underlying IC3
based tool we selected is iimc [24] which supports analysis
of liveness properties in LTL specification. In the following
paragraph, the experimental data given by the two different
implementation of BACH are marked as BACH (NuSMV) and
BACH (IC3), respectively.

Fig. 7: Sample Automaton

Fig. 8: Automated Highway System

In order to evaluate the performance of the technique
presented, we carry out an extensive evaluation, over a set of
widely-used benchmarks, which include the aforementioned
water-level monitor system in Fig. 1, the temperature control
system in Fig. 5, the communication based train control system
in Fig. 6, and sample automata from [15] in Fig. 7.

Besides of the above small scale models, we also conducted
the case studies on the scalable automated highway system
from [13] in Fig. 8. It is worth noting that the size of the
highway system model can be easily expanded by introducing
more cars into the system, which will increase new locations
and variables in the model. For example, Fig. 9 and Fig. 10
are the models for the automated highway system with three
cars and four cars respectively. The target locations, qbad are
all marked by double circles in the models and they are all
unreachable2.

As the performance of the path-oriented bounded reacha-
bility analysis approach has already been compared with other
BMC competitors in study [15] intensively, in this paper, we
focus on the comparison of the performance of the enhanced
BACH, with the state-of-the-art classical LHA model checker

2Due to the space limit, please refer to [15] for the detail of these automata.



Fig. 9: Automated Highway System with three cars

Fig. 10: Automated Highway System with four cars

SpaceEx [5]. According to the documentations, SpaceEx sup-
ports two scenarios: PHAVer and Support Function. The former
scenario uses the polyhedra based method to compute the
exact reachable state space as the tool PHAVer, while the
later adopts support function [28] to numerically compute the
reachable state space. In the experiment, we compare BACH
with SpaceEx in both two scenarios, which are marked as
SpaceEx (PHA.) and SpaceEx (Supp.), respectively.

The experiments are conducted on a ThinkCenter worksta-
tion (Intel i5 Quad CPU 3.1GHz, 8GB RAM and Ubuntu 13
64Bit). The time and memory usage limit for the experiment
are set to one hour and 4GB, respectively. The number of
bound means the largest number of discrete locations that
a path can have in the state space under searching. The
executable BACH and the input models we use in experi-
ments for both BACH and SpaceEx are all available from
http://seg.nju.edu.cn/BACH/rtss14.

The experiment data for the time and memory usage spent
in each benchmark is shown in Table I. We show the time and
memory usage BACH and SpaceEx spend for each problem. In
addition, for BACH, the number of IIS path segments detected
by the underlying LP solver is also given. Furthermore, it is
worth mentioning that the time spent by BACH means the
total time of the BMC and the follow-up unbounded proof
procedure.

From these data, we can see that:

• BACH successfully proved the bounded unreachable
results also stand in general for most of the bench-
marks, 8/9, except the sample automaton, by the LTL
based approach. This increases our confidence that
many practical cases can be proved to be unreachable
in general due to the existence of IIS path segments.
In this situation, BACH can give an unbounded result
while other BMC checkers are incapable of doing it.
BACH only fails to give an unbounded result for the
sample automaton. The reason is that in this case the
IISes found during the BMC procedure are not able
to block the graph.

• Comparing with SpaceEx:
◦ As pointed out in the SpaceEx’s documen-

tation and website, the support function sce-
nario, SpaceEx (Supp.), is more suitable to
handle HA with piecewise affine dynamics,
for example model with flow condition like
ẋ = Ax + Bu + c. For the class of LHA
considered in this paper, SpaceEx prefers to
use the “PHAVer” scenario, SpaceEx (PHA.),
to handle. As we can see from Table I, the
performance of SpaceEx (PHA.) is better than
SpaceEx (Supp.) in general when handling the
class of LHA considered in this paper. There-
fore, we focus on the comparison between
SpaceEx (PHA.) and BACH in the following
paragraph.

◦ On small cases, both BACH and SpaceEx
(PHA.) finish 4 of the 5 cases efficiently. For
example, for most of the models with number
of locations and variables smaller than 10, both
BACH and SpaceEx solve them quickly in less
than 1 second. We mark the quickest result by
bold font. We can see that SpaceEx (PHA.)
wins in the water and sample automaton, while
BACH outperforms on the other three cases.

◦ On the other hand, as the reachability analysis
of LHA is undecidable, classical model check-
ing technique do not guarantee to terminate.
The experiments show that SpaceEx (PHA.)
times out when dealing with the Temperature
Control System model, which has only three
continuous variables and five discrete loca-
tions. The reason is that the value range of the
variables in this model is not closed. Therefore,
the classical fix point based computation can-
not terminate. In contrast, BACH is guaranteed
to terminate.

◦ On large cases, BACH has better scalability.
Take the automated highway system for ex-
ample, BACH can solve such a system with
200 cars, 202 locations and 200 continuous
variables, in less than 70s, while SpaceEx can
only handle the system with 5 cars within
the 1h time limit. As the polyhedra based
computation is sensitive to the number of con-
tinuous variables in the LHA, the performance
of SpaceEx degrades badly when the size of



TABLE I: Results of applying BACH and SpaceEx to different LHA cases. (#locs and #vars denote the number of locations
and continuous variables in the LHA, respectively. #IIS denotes the number of detected IIS path segments. T.O. is a time out of
3600 seconds. EXC means the checker threw an exception. When the result is T.O. or EXC, the corresponding blank of memory
usage is marked as ’-’. motorcade i means automated highway system with i cars. The bound we set for BMC in BACH is 10
for all models and if BACH gives an unbounded result, corresponding time is marked with subscript U , otherwise, the result is
marked with subscript B. Last but not least, all the benchmarks are unreachable in general.)

BACH (NuSMV) BACH (IC3) SpaceEx (PHA.) SpaceEx (Supp.)
System #locs #vars #IIS Time (s) Mem. (MB) Time (s) Mem. (MB) Time (s) Mem. (MB) Time (s) Mem. (MB)
water 6 2 2 0.94U <1 0.87U 30.4 0.07U <1 0.22U 7.9

tcs 5 3 4 0.97U <1 0.98U 16.4 T.O. - 0.36U 9.4
sample 8 2 9 0.96B 26.8 0.41B 21.2 0.93U <1 EXC -
train 8 2 2 1.02U <1 0.3U <1 0.62U <1 1.24U 24.8

motorcade 5 7 5 4 0.05U <1 0.4U <1 4.94U 16 T.O. -
motorcade 10 12 10 9 0.12U <1 0.6U 16.9 T.O. - T.O. -
motorcade 20 22 20 19 0.53U 60.8 1.1U 25.4 T.O. - T.O. -
motorcade 100 102 100 99 6.66U 163.9 15.7U 389 T.O. - T.O. -
motorcade 200 202 200 199 61.8U 652.7 115.3U 3299 T.O. - T.O. -

the model increases. Different from SpaceEx,
BACH conducts lightweight BMC checking
first. Then, BACH utilizes the IIS found during
BMC process to derive an unbounded result
using LTL model checking which is a very
mature and efficient technique.

In summary, on one hand, compared to BMC checkers, our
approach can give an unbounded result in many cases. On the
other hand, in comparison to unbounded LHA checkers, our
approach is efficient and scalable and guaranteed to terminate.

V. RELATED WORK

Reachability analysis of linear hybrid automata (LHA) is a
very important problem. Classical model checking techniques
[4], [5] try to compute the whole reachable state space of LHA.
Their basic idea is to compute iteratively the next-step reach-
able state space based on the current state space. The algorithm
terminates if the next-step reachable state space is contained
by the current state space. However, such termination is not
guaranteed. Furthermore, as the computation is very sensitive
to the number of continuous variables, the state-of-the-art tools
based on this technique do not scale well to the size of practical
problems.

Recently, bounded model checking (BMC) [6] has attracted
a lot of attention as an alternative technique to the classical
model checking. The basic idea of this approach is to search for
a counterexample whose length is bounded by some integer k
in model executions. However, the result of BMC verification
only covers the bounded behavior of the LHA model. It
remains a very interesting problem that whether we can get
an unbounded proof from the BMC result.

In study [26], McMillan proposed an interpolation based
approach for unbounded model checking of finite-state transi-
tion system. They proposed to compute an over-approximation
of the forward reachable state space using SAT-based interpo-
lation. However, as the interpolants are typically highly redun-
dant, it is very difficult to apply this technique to reachability
analysis of LHA.

Sheeran et al. proposed an induction based approach called
k-induction [20] to check the safety property of finite-state
transition system. The idea of this technique is to prove that if

a set of states is not reachable in k step, then it is not reachable
in general. In [21], Moura et al. proposed to use k-induction
to verify timed and hybrid automata and they generalized the
simple path condition used in original k-induction to simula-
tion relations. As the implementation of [21] is not available,
we cannot compare the performance between our approach
and [21] numerically. However, as the unbounded analysis
of [21] is conducted by performing induction on continuous
dynamics of LHA and the procedure of generating strength-
ened invariants requires quantifier-elimination, it demands a
high computational complexity, which greatly restricts the size
of the problem that can be solved. Furthermore, quantifier-
elimination in that work might not always be available, which
means the approach may fail to give a result.

In study [23], Segelken proposed an ω-automata based
approach for CEGAR [14] verification of step-discrete linear
hybrid models. In each CEGAR iteration, they present the
spurious counterexample path found in the last iteration as
an LTL formula which is similar with our work. After that,
in order to exclude such spurious counterexample path in
the refinement of the abstract model, the author proposed
an incremental algorithm to translate the corresponding LTL
formula to an ω-automata using a dedicated algorithm which
is more efficient than the general translation algorithm [27].
Then the refinement will be done by computing the Cartesian
product of the ω-automata and the abstract model. If the
production produces an empty automata, then the original
model is safe. Different from our work, this work is about the
CEGAR verification of HA and it only focuses on step-discrete
linear hybrid models which have no continuous dynamics.
Instead, our work focuses on general LHA. On the other hand,
the main contribution of the work is an efficient algorithm to
construct an minimal ω-automata on-the-fly, which can be used
in our future work to increase the efficiency of our method.

There are also works focusing on CEGAR of LHA.
Study [31] presents a hybrid abstraction based CEGAR loop
for the class of rectangular hybrid automata, which is a special
subclass of the LHA considered in this paper. Study [13]
proposed a CEGAR method , called “Iterative Relaxation Ab-
straction”, for LHA by dropping variables from original LHA
in each iteration, and asked PHAVer to solve the simplified
model. As this technique still relies on PHAVer, in another
word, geometric computation, as the underlying checker for



the abstracted model, when the abstracted model is large, it
may still unable to handle it.

VI. CONCLUSION AND FUTURE WORK

Compared to classical full state space reachability verifica-
tion of real time hybrid systems, specifically Linear Hybrid
Automata considered in this paper, bounded verification is
much more convenient and efficient to conduct. However,
how to derive an unbounded argument of the LHA from
the bounded analysis remains a very interesting problem. In
this paper, we propose an LTL-based solution to tackle such
problem.

We propose to collect the unsatisfiable constraint cores
discovered during BMC solving and map them back to infea-
sible path segments in the discrete graph structure of the LHA
model. Then, we can present and encode such path segments
as an LTL formula. Afterwards, we propose to conduct LTL
model checking on the discrete graph structure of LHA model
to prove that the model does not have any potential path to
reach the target location without going through any of the
infeasible path segments. If the LTL proof stands, it means the
bounded unreachable result stands in the general unbounded
state space.

We implement this LTL-based solution into a bounded
LHA checker BACH. The experiments show that by this
approach, BACH can give an unbounded result for most of
the benchmarks successfully, efficiently and also with a better
scalability.

For the future work, in the current setting, the unbounded
proof procedure is conducted after the BMC completes. Then,
all the IISes founded during the BMC procedure are considered
together once for all. In the future, we will implement an incre-
mental LTL model checking algorithm and perform the LTL
checking on-the-fly parallel with the main BMC procedure
once an IIS is detected.
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